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Abstract:  We use data for over 200,000 bachelor’s degree recipients to contribute new evidence 
on the relationship between STEM training and earnings.  In contrast to studies that identify the 
expected earnings premium associated with any STEM degree or with specific college majors, we 
account for workers’ majors and the percent of total college credits completed in STEM courses 
(STEM intensity).  We find that STEM intensity is an important determinant of log-earnings for 
many STEM and non-STEM majors, and that estimated earnings gaps between pairs of majors 
can change dramatically when STEM intensity is accounted for.  In light of this evidence, we 
believe policy initiatives focused on drawing students into STEM should emphasize the potential 
value of STEM coursework for non-STEM majors. 
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1.  Introduction 

Efforts to attract students into science, technology, engineering and mathematics (STEM) have 

been central to U.S. education policy since soon after October 1957, when the Soviet Union’s 

launch of the Sputnik satellite heightened fears that the U.S. had fallen behind in those fields.  

Although policy initiatives related to STEM education have varied over the ensuing decades, the 

over-arching goal has been to maintain a pipeline of workers with the skills needed to produce 

scientific and technological innovation and, in turn, economic growth.  Current STEM policies at 

both the federal and state levels are far too numerous to summarize, but in the state of Ohio (the 

source of administrative data used for this study), current STEM programs include a large-scale 

“Choose Ohio First” scholarship program for college students pursuing STEM degrees and a 

"STEM Learning Network” that helps prepare students for STEM degrees and careers.1 

To support these longstanding policy goals, researchers have sought to understand what drives 

college students to choose STEM degrees and how those degrees are valued in the labor market.  

Recent examples of this wide-ranging research agenda include  Card and Payne (2021), Castleman 

et al. (2018), Delaney and Deverieux (2019), Gottfried and Bozick (2016), Jiang (2021),  

Swiderski (2024), and Wang (2015).  A related literature looks more broadly at college major 

choice and post-college earnings differentials among majors (e.g., Altonji et al. 2016; Arcidiacono 

2004; Lemieux 2014; Webber 2016; Wiswall and Zafar 2015).  A third strand of the literature 

extends the analysis of earnings payoffs by accounting for actual coursework or credit 

accumulations (e.g., Hamermesh and Donald 2008; James et al. 1989; Light and Rama 2019; Light 

and Schreiner 2019).  In the current study, we contribute new evidence on the relationship between 

STEM training and earnings by using a novel hybrid of each of these approaches.   

Using Ohio administrative data, we construct a sample of over 200,000 recent bachelor’s 

degree recipients for whom we can link detailed transcript data with longitudinal, post-college 

earnings records.  In contrast to studies that identify the expected earnings payoff(s) associated 

with any STEM major or, alternatively, a set of STEM and non-STEM majors, we consider two 

dimensions of STEM training:  (a) college major, which we classify into 15 STEM and 26 non-

 
1See https://highered.ohio.gov/initiatives/affordability/choose-ohio-first/cof-overview/cof and 
https://osln.org/ for information on these Ohio programs, Herold (1974) and Steeves et al. (2009) 
for discussions of the effects of Sputnik on education policy, and https://www.ed.gov/stem for 
information on “YOU Belong in STEM,” an example of current federal STEM education policy.  
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STEM fields; and (b) STEM intensity, which we define as the percentage of total college credits 

completed in STEM courses.2  By characterizing college training in this way—and by estimating 

flexible earnings models in which each major has its own intercept and nonlinear STEM intensity 

slope—we are able to address several questions that have received scant attention in the existing 

literature:  Do STEM degrees necessarily entail highly intensive STEM training?  More generally, 

how do various STEM and non-STEM degrees compare in STEM intensity?  How does the 

earnings payoff associated with additional STEM training vary across STEM and non-STEM 

majors?  Can students who choose non-STEM majors expect to earn more in the labor market by 

adding STEM courses to their college curricula?  Our data are well-suited to answering these 

questions because college students in Ohio (and throughout the U.S.) can easily switch majors 

and/or complete a considerable amount of coursework in fields unrelated to their major; e.g., the 

average student in our sample completes 70% of all credits outside the major.  In contrast, data for 

non-U.S. college students, who often have far less flexibility in their curricular choices, would be 

unlikely to provide the within-major variation in STEM training that we exploit for our analysis.       

We believe our findings are informative despite our reliance on “selection on observables”  to 

control for ability and other confounding factors in our earnings models—a strategy that dominates 

the  literature on cross-major earnings variation (Altonji et al. 2016), given the lack of viable 

methods for dealing with a large number of endogenous variables.  Evidence from robustness 

checks suggests that we control adequately for ability in our regression analysis, yet our estimates 

invariably reflect both the causal effects of skills acquired in college and the effects of unobserved 

factors such as preferences and expectations.  As such, our estimates for a given major and given 

level of STEM intensity represent the earnings payoff that students can expect to receive if they  

possess levels of unobserved factors that are typical among students making similar choices.  For 

example, we identify the estimated log-earnings associated with a given level of STEM intensity 

among engineering majors, and interpret this as the payoff a typical engineering might receive.  

We do not suggest that a typical arts major could expect the same payoff if forced to switch to 

 
2As detailed in section 3, for our primary definition of STEM we match course-specific, six-digit 
Classification of Instructional Program (CIP) codes from each student’s transcript to CIP codes 
identified by the Department of Homeland Security as STEM fields.  We also consider a stricter 
definition in which STEM majors and courses are confined to six fields:  biological sciences, 
computer and information sciences, engineering, engineering technology, mathematics and 
statistics, and physical sciences.   
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engineering and increase her STEM intensity, given that her unobserved factors are likely to differ 

from those of a typical engineering student.   

We uncover a number of striking patterns in the data that we hope will spur further discussion 

and analysis. STEM intensity varies dramatically across majors:  even among the six “extreme” 

STEM majors listed in footnote 2, the mean level of STEM intensity ranges from 79% for 

engineering to only 56% for computer and information science.  Computer science exemplifies the 

considerable within-major variation seen in our data, with STEM-intensity ranging from 29% at 

the 10th percentile to 77% at the 90th percentile.  This 10th percentile value is below the 90th 

percentile level of STEM intensity of 33% for philosophy majors, which means a subset of 

computer science majors lag behind select philosophy majors in their STEM intensity.  We also 

find that estimated log-earnings gaps between STEM and non-STEM majors are often sensitive to 

STEM intensity.  For example, the estimated gap between engineering (the highest-paid major, on 

average) and languages (among the lowest-paying majors) is 0.71 when STEM intensity is ignored, 

but only 0.59 when we use our flexible specification to compare a low STEM intensity engineering 

major to a high STEM-intensity languages major.  Our evidence suggests that the augmentation of 

a lower-paying, non-STEM degree with STEM training can, in some cases, lead to substantial 

labor market rewards. 

2.  Related literature 

Our analysis relates to prior research that identifies earnings benefits associated with a STEM 

degree or with an array of college majors, as well as studies that incorporate measures of college 

coursework into earnings models.  In this section, we overview a sampling of those studies to 

illustrate how the current study complements and extends existing research.   

Among studies that examine the STEM earnings premium, the focus is often on differences 

between men and women.  For example, Olitsky (2014) identifies separate STEM effects for men 

and women at each quartile in the ability distribution, using propensity score matching to account 

for the endogenous choice of a STEM or non-STEM major.  He finds a particularly pronounced 

gender gap in the STEM wage premium among high-ability workers.  Jiang (2021) follows up on 

this issue as part of a broader study that employs a latent skills approach to modeling binary choices 

between STEM and non-STEM majors and occupations.  She finds that the average treatment 

effect of STEM degrees increases in skill for both men and women, with insignificant differences 

across genders.  Even et al. (2023) is a rare example of a recent study that does not examine gender 
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or racial/ethnic gaps; instead, the authors compare the “overall” STEM earnings premium across 

OECD countries to identify the importance of education levels, union levels, and other factors.  

Among their key take-aways is that the STEM wage premium in the U.S. is substantially higher 

than the average premium for other OECD countries. 

Among studies with a focus on the STEM wage premium, Light and Rama (2019) is a 

precursor to ours insofar as they introduce a continuous measure of STEM intensity in lieu of an 

orthodox, binary STEM/non-STEM indicator.  Aside from that commonality, the current study 

differs dramatically from Light and Rama (2019), who focus on gender differences in the log-

earnings associated with interactions between each worker’s college STEM training and 

occupational STEM requirements.  In contrast to our study, Light and Rama (2019) also ignore 

college major (except to use a binary STEM major dummy in a “straw man” specification that 

excludes STEM intensity) and use data from the 1997 National Longitudinal Survey of Youth.  In 

the current study we do not pursue a gender comparison, nor do we control for post-college 

occupations or the STEM requirements of those occupations because our administrative data lack 

occupational identifiers.  Instead, we borrow the measure of STEM intensity used by Light and 

Rama (2019) to explore the joint relationship between college major, STEM intensity, and 

earnings.  

Specifically, we use our continuous STEM intensity measure to augment log-earnings models 

that control for either a binary STEM degree indicator or 41 major-specific intercepts.  The latter 

approach to identifying  “returns” to college major has been widely used, but without the inclusion 

of STEM intensity.  Most studies in this literature account for the endogeneity of college majors 

by incorporating a rich vector of controls (including academic ability) in an earnings model (e.g., 

Altonji et al. 2016; Chevalier 2011; Hamermesh and Donald 2008; James et al. 1989; Light and 

Schreiner 2019; Light and Wertz 2022; Loury and Garman 1995; Sloane, Hurst and Black 2021; 

Webber 2016).   Some analysts estimate a structural model (Arcidiacono 2004; Beffy et al. 2012; 

Kinsler and Pavan 2015) or use a regression discontinuity design (Bleemer and Mehta, 2022; 

Hastings et al. 2014; Kirkeboen et al. 2016) to contend with endogeneity, although the cost of 

these strategies is a severe reduction in the number of college majors that can be analyzed.   

Overall, this literature provides clear evidence that earnings vary widely across college majors and 

that predicted earnings for select non-STEM majors can exceed those of select STEM majors.  For 

example, Altonji et al. (2016) estimate a log-earnings model with 19 major-specific intercepts and 
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find that engineering majors have the highest predicted log-earnings (0.392 relative to education) 

followed by accounting (0.328), computer/mathematical sciences (0.327), economics (0.313), and 

nursing (0.312). However, the exent to which STEM coursework affects the relative returns to 

college majors, both STEM and non-STEM, has not previously been assessed. 

The primary contribution of our current study is to reexamine existing evidence of earnings 

effects of college majors in a manner that reveals how the evidence changes when we account for 

STEM intensity.  In using this measure, however, we join a relatively small group of studies that 

include measures of college coursework in earnings models.  Examples of this approach include 

James et al. (1989), who control for the number of college math credits along with separate 

intercepts for six aggregate majors, and Hamermesh and Donald (2008), who control for upper-

level science and math credits (as well as grades) along with 11 major-specific intercepts.  Light 

and Schreiner (2019) include intercepts for 12 college majors along with student-specific measures 

of “major intensity,” defined as the percentage of total college credits completed within the major.  

In a similar vein,  Light and Wertz (2022) control for the occupational specificity of each major in 

decomposing each student’s total college credits (weighted by occupational specificity) into 

within-major, within-discipline, and outside the discipline.  They find that students majoring in 

nonvocational fields such as English can expect to increase their post-college earnings 

significantly by taking occupationally specific credits outside their discipline.   

As our brief review demonstrates, studies that exploit detailed college credit information (as 

we do in the current study) are rare, presumably because these analyses require course-specific 

information obtained from college transcripts.  Given that the requisite data are becoming 

increasingly available—and that studies exploiting such data, including the current study, point to 

important relationships between college coursework and post-college earnings conditional on 

major—we expect this sub-literature to grow substantially in years to come.   

3.  Data 

3.1 Data sources 

We use college transcript data from Ohio’s Higher Education Information System (HEI) combined 

with earnings records from Ohio’s Unemployment Insurance (UI) data; both are restricted-use, 

administrative databases made available by the Ohio Longitudinal Data Archive (OLDA). HEI 

data contain detailed transcript records for all students who enroll in Ohio’s public two- and/or 

four-year colleges and universities from 1999 onward.  UI data report quarterly earnings, weeks 
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worked, and industry of employment by employer from 1995 onward.   Our merged HEI-UI 

records span 1999 through the third quarter of 2019, which is the last quarter for which UI records 

were available when we were given access to the data.  

Although merged HEI-UI data are well-suited for our analysis, they are not without 

shortcomings.  First, transcript data are only available for public colleges and universities in Ohio, 

so we miss coursework for students who transferred from a private or non-Ohio college to their 

degree-granting institution.  Second, UI earnings data are only available for workers whose 

employers participate in Ohio’s UI system.  As a result, we lack earnings records for anyone 

working outside Ohio, as well as for the relatively small number of Ohio workers whose employers 

are excluded from UI coverage (e.g., employees of the federal government or select religious 

organizations, and a subset of self-employed workers).  Third, our data lack occupation identifiers, 

so we are unable to explore the match between college training and post-college occupations, 

which previous studies have shown to be potentially important (e.g., Jiang 2021; Lemieux, 2014; 

Light and Rama 2019; Robst 2007).  Our sample selection criteria and robustness checks are 

designed, in part, to contend with the first two data limitations.   

3.2  Sample selection 

Although several million Ohio college students appear in the HEI database, we begin by reducing 

the sample to 426,559 individuals who earn a bachelor’s degree from one of Ohio’s 13 public, 

four-year institutions from 2010 onward.3  We impose the latter criterion to focus on both recent 

graduation cohorts and post-college earnings within, at most, nine years of graduation.  Due to 

employer learning (Altonji and Pierret 2001), career interruptions (Blau and Kahn 2017; Spivey 

2005) and other factors, we believe relationships between college coursework and earnings are 

best assessed soon after graduation.4   

We also drop students (a) who earn their degree after age 26, given that they are likely to have 

significant, pre-college work histories; (b) with unusually high credit concentrations in 

 
3The 13 Ohio universities are Bowling Green State U., Central State U., Cleveland State U., Kent 
State U., Miami U., Ohio State U., Ohio U., Shawnee State U., U. of Akron, U. of Cincinnati, U. 
of Toledo, Wright State U. and Youngstown State U. 

4Webber (2016) finds that net benefits to college investments do not arise for many years among 
students faced with high costs and/or debt, but we focus on earnings rather than “return on 
investment.”  Note that our use of a 2010 cutoff has the added advantage of allowing us to skirt 
the 2008-2009 recession.  
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nonacademic subjects (e.g., “construction trades”) because they may not have been pursuing a 

conventional four-year degree; and (c) whose degree field appears to be miscoded.  In addition, 

we drop students whose college records show fewer than 108 credits accumulated towards a 

bachelor’s degree (90% of the 120 credits typically needed to earn a degree); it appears that these 

incomplete records arise when transfer credits are omitted from HEI records made available to 

researchers.  Finally, we drop students with no post-college earnings during the observation 

window that begins with the first calendar quarter after college graduation and ends with the third 

quarter of 2019 (when our UI records end).  For individuals who reenroll in school, we terminate 

the earnings window with the last calendar quarter preceding reenrollment.5 

Our final sample consists of 2,717,057 quarterly earnings observations for 209,137 individuals.  

These panel data are unbalanced, with the earliest (2010) graduation cohort contributing far more 

quarterly observations, on average, than the latest (2019) cohort.  An unbalanced panel is not 

inherently problematic, but our robustness checks in section 6.3 include estimates based on a 

subsample of workers with at least four years of post-college earnings.   

3.3  Defining college majors, STEM majors, and STEM intensity 

HEI uses six-digit 2010 Classification of Instructional Programs (CIP) codes to record each 

student’s primary major.6  The 209,137 students in our sample complete majors with 428 different 

six-digit CIP subject codes that distinguish, for example, between general microbiology and 

cellular molecular biology within the two-digit biological sciences field.   The analysis of 428 six-

digit majors (or, alternatively, 195 four-digit majors)  is impractical for our purposes, given that 

we intend to compare STEM coursework across majors and estimate log-earnings models with 

major-specific regressors.  In addition, an examination of websites for the 13 Ohio universities in 

our sample reveals numerous cases where multiple six-digit majors are granted by the same 

department and are differentiated primarily by the choice of upper-level courses offered by the 

department.      

 
5The data appendix provides additional details on sample selection and other data issues discussed 
in this section. 

6We do not attempt to account for double majors, minors, and other types of concentrations  
because these options differ across institutions and are not consistently identified in our data.  Our 
assessment of the data leads us to believe that switching majors is a more important contributor 
to variation in STEM intensity than is earning a double major, and that neither phenomenon is 
likely to account for more than a small portion of the tremendous cross-student heterogeneity in 
STEM intensity.    
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 To obtain a manageable number of majors, we aggregate the 428 six-digit majors in our sample 

to fields that correspond, in most cases, to CIP two-digit codes (biological sciences, education, 

business, social sciences, etc.).  Although the CIP taxonomy includes 47 two-digit codes, we are 

left with 32 after eliminating vocational and “basic skills” fields in which bachelor’s degrees are 

not rewarded, reassigning three fields in which only a handful of sample members obtain degrees, 

and disaggregating the popular two-digit major that spans a variety of health fields into five majors:  

speech and hearing, medical sciences, public health, nursing, and health and rehabilitation 

sciences.    

Our next task is to designate each major and college course as STEM or non-STEM; this results 

in further revisions to our set of college majors.  There is no consensus in the literature as to which 

college majors and courses fall under the “science, technology, engineering and mathematics” 

umbrella, but we use the “U.S. Department of Homeland Security (DHS) STEM Designated 

Degree Program List,” which provides six-digit CIP codes for fields that DHS considers to be 

STEM and that, as a result, qualify international degree-recipients for visa extensions to pursue 

optional practical training.7  We use this STEM list for two reasons.  First, it is a widely-accepted 

STEM definition that is not viewed as extremely narrow or broad.  Second, although none of the 

13 Ohio universities in our sample appears to have an official list of STEM majors, the rare 

references to STEM majors that we were able to find on these universities’ websites use the DHS 

definition.   

While most of our 32 majors based on two-digit CIP codes consist entirely of six-digit majors 

that are designated STEM (e.g., engineering, biological sciences) or non-STEM (e.g., English, 

arts), nine majors (e.g., agriculture, business) contain a mix of six-digit STEM and non-STEM 

majors. In these cases, we split the major into STEM and non-STEM versions and rely on each 

student’s six-digit CIP code to determine whether she is a STEM or non-STEM major.  Stated 

differently, rather than naively aggregate our six-digit majors to the two-digit fields given by CIP, 

we aggregate to the largest group within each two-digit field that avoids combining STEM and 

non-STEM majors.  Within the two-digit agriculture field, for example, students majoring in plant 

science, animal science, or food science are deemed to be STEM agriculture majors, while students 

 
7This list, dated January 21, 2022, is disseminated by U.S. Immigration and Customs Enforcement 
and is available at https://www.ice.gov/doclib/sevis/pdf/stemList2022.pdf.  Recent studies that 
used this STEM definition include Jiang (2021), Light and Rama (2019), and Smith et al. (2021). 
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majoring in agricultural management, agricultural operations, and agricultural economics are 

among those categorized as non-STEM agriculture majors.8     

A careful perusal of six-digit CIP codes and our sample members’ coursework reveals that 

courses designated as STEM are, with few exceptions, highly scientific and technical.   

Nonetheless, the notion that a subset of degrees in agriculture, business, and even social sciences 

and criminal justice are STEM might be at odds with policy initiatives designed to encourage 

students to earn degrees in engineering, mathematics, and other “extreme” STEM fields.  

Therefore, we repeat a portion of our analysis using an alternative STEM definition in which all 

nine “split” majors (and all the courses falling within those fields) are designated as non-STEM.  

This leaves us with six STEM majors (biological sciences, computer and information sciences, 

engineering, engineering technology, mathematics and statistics, and physical sciences) that are 

unquestionably considered STEM under any definition or policy initiative.  

Our primary STEM definition yields a set of 41 majors:  six are “pure” STEM, nine are split 

into both STEM and non-STEM versions, and 17 are “pure” non-STEM; i.e., we have 15 STEM 

and 26 non-STEM majors.  For our robustness checks based on a stricter STEM definition, we 

have six STEM and 26 non-STEM majors.  Tables 2 and A2-A3 list our 41 majors. 

In addition to categorizing majors as STEM or non-STEM, we must determine each student’s 

total credit accumulation and the percentage of those total credits completed in STEM fields.  HEI 

data include the title, completion status, credits earned, term, and six-digit CIP code for each 

course.  For our primary STEM definition, we simply compute each sample member’s total 

completed credits and the percentage of those total credits completed in DHS-designated STEM 

courses, based on six-digit CIP codes for each course.  For our stricter STEM definition, the 

numerator is confined to credits completed in DHS-designated STEM courses in biological 

sciences, computer and information sciences, engineering, engineering technology, mathematics 

and statistics, and physical sciences.  We refer to these variables as total credits and STEM 

intensity, with the latter measured two ways.   We choose to focus on the estimated effect on log-

 
8Two additional two-digit majors could be split into STEM and non-STEM versions, but are not 
due to sample size concerns.  As a result, computer and information science (a STEM major with 
3,907 sample members) includes four individuals with a six-digit, non-STEM major (CIS support 
services) and architecture (a non-STEM major with 1,574 sample members) includes 12 students 
with a six-digit STEM major (architectural/building sciences and technology).  Every estimate 
reported in our analysis is invariant to the inclusion in our sample of these 16 reclassified students.  
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earnings of STEM intensity (conditional on total credits) rather than total STEM credits because 

an increment of, say, three STEM credits is quite different for students who complete only 108 

total credits than for those who complete 160 or more total credits.   

3.4  Additional variables used for log-earnings models 

The dependent variable for our regression analysis is the natural logarithm of real, average weekly 

earnings; additional details are in the data appendix.  The key explanatory variables are a binary 

STEM major indicator, 41 major dummies, and measures of total credits and STEM intensity.  

These variables—which we include in different combinations in our regression models—are 

described in section 3.3.  In the remainder of this section, we describe the set of baseline regressors 

included in every specification.  Table 1 shows summary statistics for most of these baseline 

regressors plus the dependent variable. 

Our baseline regressors include indicators of whether the sample member is male, Hispanic, 

white (the omitted group), Black, Asian, or of another/unknown race.  We would ideally include a 

pre-college measure of academic ability, but our HEI data do not include high school grades or 

scores for college admission tests.  In the absence of that information, we follow Ost, Pan and 

Webber (2018) and use each student’s grade point average in the first term of undergraduate 

enrollment as a measure of “early” academic ability.9  We also control for the percentage of first-

term attempted college credits that are completed, and whether the student completed more than 

three credits in the first term in basic skills, vocational, or personal enrichment courses.  

To account for heterogeneity in college enrollment patterns, we include indicators of whether 

the student attended a single, four-year college (the omitted group) or underwent (a) one two-year 

to four-year transfer; (b) one four-year to four-year transfer; or (c) multiple transfers.  We also 

control for whether the student attended multiple campuses of the same institution, and for 

associate degree receipt.  Our final measure related to college enrollment is the student’s age at 

bachelor’s degree receipt.  Although we confine our sample to individuals who graduate by age 

26, this variable captures remaining variation in enrollment discontinuity and time to degree. 

We also control for fixed effects for the year in which the bachelor’s degree was awarded and, 

importantly, the degree-granting institution.  Institution fixed effects enable us to eliminate any 

 
9Our preferred regression specifications include college major dummy variables, and all 
specifications include university fixed effects, so differences in grading standards across majors 
and institutions are accounted for.  
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cross-institution heterogeneity in average student ability, average course difficulty, grading 

policies, credit requirements, and course and major offerings.  

Our remaining baseline controls are years of post-college work experience and its square.  We 

construct an “actual experience” measure by summing the number of calendar quarters with 

positive earnings from college graduation through the quarter associated with the given earning 

observation, and dividing by four.   

4.  Regression strategy 

Our analytic strategy involves comparing predicted log-earnings for individuals with different 

college majors and levels of STEM intensity.  We base these predictions on alternative versions of 

the following log-earnings model: 

ln𝑌!"#$ = 𝛼 + 	𝛽𝑍! + 	𝛾𝑋!$ + 𝛿" + 𝜌# +	𝑒!$ ,																																																																												(1)  

where Yisyt is real, average weekly earnings in quarter t for individual i who graduates from school 

s in calendar year y, Zi represents one or more of the key regressors defined in section 3.3, and Xit 

is the set of baseline controls described in section 3.4; 𝛿" and 𝜌# are school and graduation-year 

fixed effects, respectively. We discuss the extent to which key regressors might be correlated with 

the time-varying residual, eit, later in this section.  

In our first specification, Zi is a binary indicator of whether the individual’s college major is 

STEM or non-STEM; this specification takes no account of college coursework and identifies an 

average log-earning gap between all STEM majors and all non-STEM majors.  In specification 2, 

we replace the STEM indicator in specification 1 with a set of 40 major dummies (with non-STEM 

agriculture as the omitted major) to assess how predicted log-earnings vary among the majors that 

specification 1 treats as two homogenous groups.  In specifications 1' and 2', we augment 

specifications 1-2 by adding controls for total credits and its square, and STEM intensity (the 

percentage of total credits completed in STEM fields) and its square.  We use quadratic functions 

because there is considerable nonlinearity in the credit-earnings relationships, yet experimentation 

reveals that higher-order polynomials are unnecessary; for comparison, we also summarize 

estimates based on a linear function when presenting our findings in section 6.  Specification 2'' 

introduces additional flexibility by interacting the STEM intensity measures with major dummies, 

thus allowing each major to have its own intercept and nonlinear STEM intensity gradient. 

We use our regression estimates to address three issues.  First, using specifications 1 and 2, we 

demonstrate that a simple classification of majors as STEM or non-STEM masks tremendous 
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variation in predicted log-earnings within the two groups.  Second, using specifications 2 and 2', 

we show how each major’s predicted log-earnings compares to its mean STEM intensity and how 

inferences about the relative “return” to each major change when STEM intensity is taken into 

account.  Third, using specifications 2, 2', and 2'', we assess predicted log-earnings gaps between 

select pairs of majors.  For example, we compute the predicted gap between an engineering major 

with an unusually low level of STEM intensity and an observationally equivalent business major 

with an unusually high level of STEM intensity—and we compare this predicted gap to one that 

reverses each major’s assumed STEM intensity and to one based on a specification that does not 

account for STEM intensity.  By considering several pairs of majors and alternative levels of 

STEM intensity, we gain a clear sense of how STEM coursework relates to post-college earnings. 

We use ordinary least squares (OLS) to estimate the log-earnings models described above, and 

account for nonindependence of the residuals among multiple observations for each individual in 

computing the standard errors.  Clearly, our key regressors are self-selected on the basis of 

academic ability, noncognitive traits, preferences, and expectations about the post-college job 

market, and some of these factors are invariably related to post-college wages and curriculum 

choice.  We use a “selection on observables” strategy to reduce this endogeneity problem by 

including a rich set of ability-related regressors and fixed effects (see section 3.4) that, we believe, 

absorb a large portion of the cross-student and cross-institution variation in ability among 

bachelor’s degree recipients.   

Nonetheless, we acknowledge that our estimated OLS coefficients for key variables are likely 

to reflect the confounding effects of individual preferences, expectations, and noncognitive traits.  

Unfortunately, we lack a viable econometric strategy for reducing these sources of endogeneity.  

We would have to reduce the number of majors to three or four to incorporate a structural approach 

similar to that of Arcidiacono (2004), Beffy et al. (2012) Jiang (2021), or Kinsler and Pavan (2015).  

We cannot use a regression discontinuity strategy to identify causal effects of college major on 

earnings because we lack the idiosyncratic admissions policies exploited by Bleemer and Mehta 

(2022), Hastings et al. (2014) and Kirkeboen et al. (2016).    

Even if we were to view our continuous STEM intensity measure as our sole endogenous 

variable, we lack a suitable instrumental variable.  Changes in institutional policies related to 

general education and major-specific credit requirements are rare, and a careful examination of 

select policy changes reveals virtually no first-stage explanatory power.  We believe this is due to 
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the tremendous latitude given to college students in their curriculum decisions, especially in 

fulfilling nonmajor credit requirements that, for the mean student in our sample, account for 70% 

of total credits.  Because this flexibility extends to major requirements as well, we are also unable 

to distinguish with sufficient confidence between STEM courses that are required by the major 

and those taken as electives or general education requirements.  However, as discussed below, we 

experiment with STEM intensity measures based only on courses taken either “early” or “late” in 

the four-year program as an indirect way to hone in on STEM courses that are likely to be upper-

level and/or required by the major.   

Although all identification strategies have advantages and disadvantages, it is worth noting 

that our “selection on observables” approach not only dominates the existing literature, but 

provides informative evidence.  The ideal causal effect on earnings of, say, an engineering degree 

is often thought to be based on a hypothetical experiment in which a randomly-chosen student is 

assigned to an engineering major; the identification strategy that mimics this experiment produces 

an estimated “return” that is wholly attributable to the skills acquired from an engineering degree.   

However, if this randomly-chosen student has abilities and preferences that are roughly halfway 

between those of engineering-oriented students and, say, arts-oriented students, the causal effect is 

not a meaningful representation of what either type might gain from an engineering degree.  We 

believe our estimated OLS earnings effect of an engineering degree is informative (as long as we 

adequately eliminate the confounding effect of ability), even though it represents what a randomly-

chosen student can expect to earn from an engineering degree as a result of skill acquisition and 

the preferences, traits, and expectations that characterize students who choose that particular major.   

We attempt to dispel any doubts about the usefulness of our estimates with a series of 

robustness checks.  First, to absorb any remaining variation in student ability, we add each student’s 

final, cumulative grade point average as a regressor and, alternatively, eliminate students who 

attend multiple institutions and/or campuses.  Second, we reduce the sample to individuals who 

contribute earnings observations for at least the first four years following college graduation to 

focus on workers who are likely to be career-oriented, holding jobs that use their college degrees, 

and not simply biding time before entering graduate school.  Third, we experiment with three 

alternative measures of STEM intensity that only consider credits completed in the first, second, 

or last year of college.  These experiments reveal whether relationships between STEM intensity 

and log-earnings differ for general education versus upper-level STEM courses.  Fourth, we 
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replicate a subset of our findings using the stricter definition of STEM described in section 3.3. 

5.  Summary statistics 

Before presenting estimates of log-earnings models, we document the considerable heterogeneity 

in STEM intensity within and across majors.  We begin with the first set of columns in table 2, 

which summarize the distributions of our STEM intensity variable for each major.  Majors are 

ranked by their mean STEM intensity within STEM and non-STEM groups. 

Table 2 reveals a mean level of STEM intensity of 69.3% among all STEM majors (indicating 

that the typical STEM major completes over two-thirds of her total credits in STEM courses), 

which is 3.5 times higher than the corresponding mean of 19.8% among non-STEM majors.  While 

this comparison is unsurprising, the corresponding standard deviations (14.7 and 11.4 for STEM 

and non-STEM majors, respectively) and 10th-90th percentile ranges (34.1 and 27.1) reveal 

substantial variation within each group.   

Focusing first on the 15 STEM majors, table 2 reveals that the highest mean levels of STEM 

intensity are for engineering (79.1%),  health and rehabilitation sciences (72.2%), engineering 

technology (71.4%), and physical sciences (66.7%).  These relatively high means reflect not only 

the STEM-intensive nature of the training needed to complete bachelor’s degrees in these fields 

but also the likelihood that students choosing these majors favor STEM courses when completing 

general education and other non-major credit requirements.  The least STEM-intensive STEM 

majors, at the mean, are communications (17.5%), criminal justice (35.7%), business (36.6%), and 

social sciences (44.5%).  Each of these is notable for being among nine “split” majors defined in 

section 3.3.  Because these are nontraditional STEM fields, it is unsurprising that their mean levels 

of STEM intensity are relatively low—yet we are reassured to see that, for all nine “split” fields, 

the mean level of STEM intensity for the STEM major exceeds the mean level for the non-STEM 

counterpart (e.g., 44.5% vs. 18.9% for STEM and non-STEM social sciences majors).  It is 

important to note that cross-major variation in STEM intensity among STEM majors is not solely 

due to the inclusion of nontraditional majors:  even among the six majors that meet our restrictive 

definition of STEM, the mean level of STEM intensity ranges from 79.1% for engineering to 

55.6% for computer and information sciences. 

Turning to non-STEM majors, we learn from table 2 that the highest mean levels of STEM 

intensity are for environmental studies (53.2%), medical sciences (44.7%), agriculture (41.1%), 

and psychology (33.2%).  Aside from psychology, five of the six most STEM-intensive non-STEM 
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majors are not only “split” fields but are outside the humanities and social sciences.  

Unsurprisingly, humanities and social sciences are well represented among non-STEM majors 

with the lowest mean levels of STEM intensity:  Arts is the least STEM-intensive of all majors 

with a mean of 10.1%, followed by legal studies (11.4%), military studies (11.8%), 

communications (13.8%), and English (13.9%). 

As discussed in section 3.3, each college course that contributes to our STEM intensity 

measure (based on the DHS definition of STEM) appears to cover scientific or technical subject 

matter, yet we acknowledge that STEM courses offered in business, agriculture, and other “split” 

fields are not always the focus of STEM policy.  When we switch to our alternative definition in 

which the nine “split” majors are reclassified as non-STEM and only courses in the remaining six 

STEM fields contribute to STEM intensity, mean STEM intensity falls by 0.5 to 3.0 percentage 

points for 22 of 23 non-split majors, as seen in table 3, which partially replicates table 2 using the 

restrictive STEM definition; the exception is psychology, where the mean falls by almost half 

because DHS considers many psychology courses to be STEM.10  For six of the nine “split” majors, 

the new sample means fall by 1.0 to 5.3 percentage points relative to the non-STEM levels in table 

2.  For the remaining majors (environmental studies, medical science and agriculture), the new 

means fall by 7.4 to 16.0 percentage points.  In short, STEM intensity is sensitive to our STEM 

definition for four non-STEM majors and, as expected, for the nine “split” STEM majors. 

Not only do we see large differences across majors in mean levels of STEM intensity, we also 

see variation in STEM intensity within each major.  Using the difference between the 90th and 10th 

percentile levels as our metric, table 2 shows that this range tends to increase (decrease) as mean 

STEM-intensity falls among STEM (non-STEM) majors, albeit nonmonotonically.  Among STEM 

majors, the 90th-10th percentile range is as low as 17.5 (engineering) and as high as 49 (both 

criminal justice and computer and information science); among non-STEM majors, it ranges from 

a low of 11.1 (military studies) to a high of 56.1 (medical sciences). 

Table 2 also reveals that the more STEM-intensive non-STEM majors often have higher levels 

of STEM-intensity than many STEM majors. For example, the mean level of STEM intensity 

among non-STEM environmental studies majors (53.2%) falls just short of both the mean for 

 
10The two-digit psychology field contains numerous six-digit STEM courses, but it is not a “split” 
major because none of its STEM subfields are among our sample members’ majors; see the data 
appendix for details.  
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computer and information science majors (55.6%) and the 10th percentile level among physical 

science majors (53.8%).  Moreover, the 90th percentile level among philosophy majors (31.3%) 

exceeds the 10th percentile level among computer and information science majors (28.8%).  This 

latter comparison is particularly striking, given that philosophy and computer science majors are 

typically thought to be at opposite ends of the STEM training spectrum. 

STEM majors are likely to earn a higher percentage of their STEM credits in upper-division 

courses than are non-STEM majors.  We lack a direct way to measure the level or rigor of each 

STEM course or whether it fills a major-specific requirement, but in the right-most columns of 

table 2 we report means and standard deviations for the percentage of total STEM credits earned 

in the first year of college; these credits are likely to correspond to introductory courses taken to 

complete general education requirements.  Unsurprisingly, the mean concentration of “early” 

STEM training is much higher among all non-STEM majors (37.1%) than among all STEM majors 

(21.9%).  However, table 2 shows considerable variation in this measure, with the most STEM-

intensive majors tending to be the least “front-loaded” even among non-STEM majors.  As a result, 

the mean level of “early” STEM credits is lower for select non-STEM majors (e.g., environmental 

studies (19.7%), psychology (22.6%), agriculture (24.9%)) than for select STEM majors (e.g., 

medical sciences (29.4%), communications (30.7%), and business (32.8%)). 

In principle, within- and between-major variation in STEM intensity could reflect variation in 

total credits (the denominator) rather than total STEM credits (the numerator).  In fact, this proves 

not to be the case.  The mean (S.D.) for “total credits” is 130.8 (19.3) among all STEM majors and 

129.9 (17.7) among non-STEM majors (table 1).  Among STEM majors, the major-specific mean 

of total credits ranges from a high of 150.5 for public health to a low of 118.5 for social sciences.11   

Among non-STEM majors, the mean ranges from 139.4 for education to 120.8 for languages, with 

the means for 20 of 26 majors clustered within six credits of the pooled mean of 129.9.  

Importantly, if we rank both STEM and non-STEM majors by their mean levels of STEM credits, 

the ranking is almost identical  to the ranking based on mean STEM intensity shown in table 2, 

with a few pairs of majors with similar levels of total credits swapping positions.  Although 

variation in total credits is not driving the patterns discussed here, we control for total credits (and 

its square) in all regression specifications that include STEM intensity. 

 
11The major-specific numbers discussed in this paragraph are not tabulated. 
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6.  Findings based on regression analysis 

We now turn to OLS estimates for each specification of the log-earnings model described in section 

4.   Table 4 reports estimated coefficients for key covariates for specifications 1-2 and 1'-2', with 

the 41 majors ranked according to the magnitudes of their estimated coefficients for specification 

2.  Estimated coefficients for specification 2'' are shown in appendix table A4.  It is difficult to 

draw inferences directly from such a highly parameterized model, so we focus our discussion of 

specification 2'' on estimated marginal effects for a select subset of majors (table 5).   

6.1  Estimates based on specifications 1-2 

Table 4 reveals that the estimated coefficient for the dichotomous STEM indicator in specification 

1 is a precisely estimated 0.251. This parameter estimate—which falls midway between OLS 

estimates of 0.20 and 0.30 reported by Olitsky (2014) and Even et al. (2023), respectively, using 

alternative samples of U.S. workers—identifies the predicted gap in log-earnings between 

observationally identical workers with STEM and non-STEM bachelor’s degrees, ignoring any 

variation in their college majors, STEM intensities, and total college credits.   While this naïve 

estimate identifies a substantial payoff to a STEM degree, it masks considerable variation in log-

earnings among workers with different majors.   

Cross-major variation in log-earnings—which has been highlighted in prior studies, including 

Altonji et al. (2016), Chevalier (2011), Hamermesh and Donald (2008), and Light and Schreiner 

(2019)—is revealed by the estimates for specification 2, which accounts for workers’ college 

majors but not their STEM intensity.  As seen in table 4,  STEM majors’ predicted log-earnings 

range from a high of 0.316 (relative to non-STEM agriculture, which is the omitted major) for 

workers with an engineering degree to a low of -0.307 for workers with a biological sciences 

degree, and from a high of  0.222 (nursing) to a low of -0.450 (philosophy) among workers with 

non-STEM degrees.  The predicted log-earnings gap between the highest- and lowest-paid STEM 

workers is 0.623 (0.316 – (-0.307)), while the analogous gap for non-STEM workers is 0.672 and 

the “global” high-low gap (engineering vs. philosophy) is 0.766.    

While the estimates just discussed confirm well-known patterns, a unique feature of our 

analysis is that we can compare the ranking of college majors’ predicted log-earnings to the ranking 

of their mean levels of STEM intensity.  Table 4 reports each major’s rank with respect to both 

statistics, but the relationships are more easily seen in figure 1, which plots each major’s estimated 

coefficient for specification 2 (table 4) against its mean level of STEM intensity (table 2); STEM 
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majors are shown in bold-face.   Unsurprisingly, engineering is top-ranked with respect to both 

predicted earnings and mean STEM intensity, while arts has the lowest joint ranking.  More 

interesting, in our view, are “off diagonal” majors:  Nursing and business (both STEM and non-

STEM) are prominent among majors with relatively large estimated coefficients relative to their 

mean levels of STEM intensity, while environmental studies (both STEM and non-STEM), STEM 

agriculture and biological sciences are among the majors that are relatively more STEM-intensive 

than high-earning.  Clearly, the predicted log-earnings associated with each major do not always 

line up with the major’s mean level of STEM intensity.  

6.2  Estimates based on specifications 1'-2' 

We now turn to specifications 1' and 2', which augment the specifications just discussed by adding 

STEM intensity and its square along with total credits and its square.  Table 4 reveals that the 

addition of actual STEM training to the log-earnings regression has a dramatic effect on the 

estimates.  The estimated coefficient for the binary STEM indicator falls from 0.251 in 

specification 1 to an imprecisely-estimated -0.011 in specification 1', while the estimated marginal 

effect of a 10 percentage point increase in STEM intensity (per the bottom rows of table 4) is 0.073 

relative to the STEM mean of 69.3 and 0.043 relative to the non-STEM mean of 19.8.  (If we were 

to constrain the effect of STEM intensity to be linear we would miss this “diminishing return” and 

would instead obtain a uniform, estimated marginal effect of 0.050.)   In short, specification 1' 

identifies a large estimated return to STEM intensity that completely supplants the large, positive 

STEM major premium identified by specification 1. 

As seen in the specification 2' estimates in table 4, a more nuanced pattern emerges when we 

add credit variables along with major dummies.  The estimated marginal effect associated with a 

10 percentage point increase in STEM intensity falls relative to what is seen for specification 1', 

from 0.073 to 0.037 when we use the relatively high STEM mean as the starting point and from 

0.043 to 0.012 when we use the non-STEM mean.12  Moreover, the estimated coefficients for every 

STEM major except business and communications decrease in magnitude, and the estimated 

coefficients for all but the two most STEM-intensive non-STEM majors (environmental studies 

 
12When we constrain the estimated effect of STEM intensity to be linear, the estimated marginal 
effect (untabulated) is 0.017 which, as with specification 1', is intermediate to the two estimated 
effects reported in table 4.  Estimated major effects are robust to whether we use a linear or 
quadratic function for STEM intensity but, clearly, inferences about the independent effect of 
STEM intensity benefit from the more flexible functional form.   
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and medical sciences) increase in magnitude.  While most of the changes in major-specific 

coefficient estimates between specifications 2 and 2' are about 0.03 in absolute value (and some 

are statistically indistinguishable from zero),  the increments (in absolute value) are as large as 

0.06-0.11 for engineering, engineering technology, health and rehabilitation sciences, public 

health, medical sciences, and biological sciences.  As a result, estimated log-earnings gaps change 

substantially for some pairs of majors when STEM intensity is taken into account, but by relatively 

little for other pairs.  For example, the estimated engineering-philosophy gap declines from 0.766 

(specification 2) to 0.623 (specification 2'), while the estimated nursing-philosophy gap changes 

only slightly, from 0.672 to 0.667.   

We add STEM intensity to specifications 1'-2' given the evidence presented in section 5 that 

neither a single STEM major indicator nor a more detailed set of major dummies can adequately 

capture cross-student variation in STEM intensity.  The changes in estimated major effects when 

switching from specifications 1-2 to 1'-2' indicate that STEM intensity is skill-enhancing for the 

average STEM major and, more specifically, for every major for which we observe a decreased 

coefficient estimate when switching from specification 2 to 2'.  For each of these relatively STEM 

intensive  majors, it therefore stands to reason that the estimated major coefficients are larger when 

(skill-enhancing) STEM intensity is excluded than when it is included.  For the remaining, less 

STEM intensive majors, all of which have a larger coefficient estimates when STEM intensity is 

included,  we cannot rule out a skill-detracting effect of STEM intensity.  We will refine these 

inferences in section 6.4 when we switch to specification 2'', which allows the effect of STEM 

intensity on log-earnings to be major-specific. 

6.3  Robustness checks based on specification 2' 

The preceding discussion motivates our first robustness test:  Because STEM intensity appears to 

be positively associated with log-earnings for the more STEM-intensive majors, we replace our 

STEM intensity variable in specification 2' with three alternatives that measure the percentage of 

credits completed in STEM courses during the first year of college enrollment, the first two years, 

and the last year.  Our concern is that STEM intensity among the more STEM-intensive majors is 

largely due to advanced courses taken to fulfill major requirements and that these courses are 

inherently more earnings-enhancing than the STEM courses taken by other majors.  

To explore these concerns, we begin by computing the marginal effect of a 10 percentage point 
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increase in STEM intensity in the first and, alternatively, last year of college.13   The first estimated 

marginal effect is 0.031 relative to a starting point of 15.1%, which is the mean level of STEM 

intensity in year 1 among STEM majors; using “late” STEM intensity, the analogous estimated 

marginal effect and mean are 0.018 and 11.9%.  This comparison indicates that “late” STEM 

courses are not more earnings-enhancing than “early” courses for STEM majors.  Moreover, we 

find that for virtually all STEM-intensive majors, the estimated major coefficient is largest for 

specification 2 (which excludes any STEM measure), followed by “late” STEM intensity, year 1 

STEM intensity, years 1-2 STEM intensity, and STEM intensity based on all years of enrollment 

(specification 2').  This pattern reveals that controls for “late” STEM intensity do the worst job of 

removing the “omitted variable bias” inherent in specification 2 and clearly indicates that the 

specification 2 vs. 2' comparison is not driven by advanced/late STEM courses. These experiments 

reveal that our preferred measure captures variation in STEM intensity better than the alternatives, 

and produce no evidence that the timing of STEM coursework is important to our findings.   

Next, we conduct the first two robustness checks described in section 4 by focusing on the 

estimated marginal effect of a 10 percentage point increase in STEM intensity, using the mean 

level of STEM intensity among STEM majors as the starting point.  As shown in table 4, this 

estimated marginal effect is 0.037 for specification 2'.  When we augment specification 2' by 

adding a measure of each student’s final grade point average (recorded when the bachelor’s degree 

is awarded), this estimated effect is 0.034; when we instead confine the sample to 1,692,310 

students who attend a single, four-year university, the estimated effect is 0.032. Both are ad hoc 

attempts to reduce any remaining variation in unobserved ability.  The fact that the estimated 

coefficients for STEM intensity (and all other parameter estimates) are largely invariant to these 

adjustments suggests that our preferred approach does not suffer unduly from ability bias. 

For the last robustness check based on specification 2', we confine the sample to 1,795,519 

individuals who contribute earnings observations in each of the first four years after graduating 

from college.  By focusing on college graduates who work continuously, do not leave Ohio, and 

are not working short-term jobs before enrolling in graduate school, we are more likely to be 

analyzing the earnings of career-oriented workers who attempt to find good matches between their 

 
13Estimates reported in this section are not tabulated.  Note that our final robustness check, in 
which we reestimate select specifications after switching to the more restrictive STEM definition, 
is discussed in the next section because it focuses on specification 2''. 
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college training and their occupation.  When we make this adjustment to the sample, the estimated 

marginal effect associated with a 10 percentage point increase in STEM intensity increases from 

0.037 (specification 2', table 4) to 0.049.  It is reassuring to find that the estimated payoff to STEM 

intensity is somewhat higher for this subsample of “continuous” workers than for our broader 

sample of college graduates, but we do not believe the difference warrants an extended 

examination of this special group.    

6.4  Estimates based on specification 2'' 

Estimates for specification 2''—which allows each major to have its own intercept (as in 

specification 2') and also its own quadratic STEM intensity slope—appear in appendix table A4.  

On one hand, this is our preferred specification because its flexibility is well-suited to capturing 

cross-major variation in STEM intensity.  On the other hand, even with our large sample size we 

are unable to identify all 120 (40x3) major-specific parameters precisely, so the estimates are more 

informative about some majors than others. 

In light of this concern, we focus our discussion on estimated marginal effects for the 11 majors 

listed in table 5.  In choosing a subset of majors for comparison, we first select the four largest 

STEM majors (engineering, biological sciences, computer and information sciences, and 

engineering technology) and the four largest non-STEM majors (business, education, 

communications, and nursing) based on sample sizes shown in table 2.  To add representation from 

the arts and humanities, we also include arts and languages, and we add the STEM health and 

rehabilitation sciences major as a STEM counterpart to nursing.  In addition to being a popular 

major, engineering has the highest-ranked mean level of STEM intensity of any major, as well as 

the highest predicted log-earnings based on the rankings shown in table 4.  Using these same 

rankings, biological sciences has the lowest predicted log-earnings among STEM fields, nursing 

has the highest predicted log-earnings among non-STEM majors, and arts has the lowest mean 

level of STEM intensity among all majors.  Thus, our subsample of 11 majors includes a number 

of interesting extremes.14 

 
14Languages is the only major chosen on the basis of the estimates reported below.  English, which 
is the largest humanities major, is arguably the more obvious choice.  For both majors, the 
estimated relationship between STEM intensity and log-earnings proves to be positive, but the 
estimated effect for languages is almost twice as large as for English, and larger than for any other 
precisely-estimated humanities major.  Thus, we use languages for our comparisons to illustrate 
the “upper bound” of estimated effects among humanities majors.   
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In computing estimated marginal effects, we use major-specific 10th percentile, mean, and 90th 

percentile levels to represent low, medium, and high STEM intensity.  These levels (reported in 

table 2) vary across majors; e.g., the difference between the 10th and 90th percentile levels ranges 

from 15 to 21 for most of our 11 majors, but STEM health and rehabilitiation sciences (32.8) and 

computer and information sciences (48.5) are notable outliers.  We prefer major-specific 

definitions of low, medium, and high levels of STEM intensity to uniform definitions that do not 

account for differences across majors in STEM intensity distributions.  If we were to uniformly 

define a STEM intensity of 20% as “medium,” for example, it would correspond to the mean for 

some majors but would be unusually low for others.   

The first column of numbers in table 5 shows within-major estimated marginal effects 

computed by incrementing STEM intensity from the major-specific 10th percentile level to the 

major-specific 90th percentile level, and the underlying 10th and 90th percentile levels are shown 

graphically in figure 2.  The estimated marginal effects are positive for all five STEM majors 

except biological sciences, which has a slightly negative, statistically insignificant estimate. 

Compared to the estimated effect of 0.051 for engineering, estimates for engineering technology 

(0.182), computer and information science (0.266) and health and rehabilitation sciences (0.162) 

are 3.6, 5.2 and 3.2 times higher, despite the fact that their 10th-to-90th percentile increments in 

STEM intensity are only 1.1, 2.8 and 1.9 times higher than engineering’s.  Clearly, the predicted 

payoff to a “low to high” increase in STEM intensity varies dramatically among STEM majors 

due to both cross-major variation in estimated STEM intensity slopes and differences in the spread 

of the STEM intensity distribution.  Among non-STEM majors, the estimated marginal effects 

range from a low of -0.094 for arts to a high of 0.160 for languages.   We find a positive “return” 

to STEM intensity for four of six non-STEM majors listed in table 5 (business, education, 

communications, and languages) and for 15 of the full set of 26 non-STEM majors (not tabulated), 

although the effects are 0.1 or higher for only a handful (e.g., languages, public health, agriculture).   

The finding that increased STEM intensity is associated with increased log-earnings for some 

majors and decreased log-earnings for others was masked by specification 2', which identifies a 

uniform STEM intensity gradient for all majors.  We cannot definitively identify the cause of a 

negative “return” to STEM intensity identified for select majors, but we conjecture that it might 

reflect a lack of productivity-enhancing communication skills, particularly among STEM majors.  

Among both STEM and non-STEM majors, this negative effect might also be due to an unusual 
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pattern of experimenting and/or major-switching that leads to an unproductive level of STEM 

intensity.  A rigorous exploration of cross-major differences in the “return” to STEM intensity 

requires more elaborate log-earnings models that account for the fields in which STEM credits are 

completed, the timing of STEM coursework and, ideally, the occupations in which each individual 

is employed; such extensions are beyond the scope of this paper. 

The remaining columns in table 5 report estimated log-earnings gaps between pairs of majors.  

Specifically, we compute the difference in predicted log-earnings between engineering and each 

of the remaining 10 majors, holding all covariates except major and STEM intensity constant 

across majors.  We first report estimated log-earnings gaps based on specification 2, which ignores 

variation in STEM intensity.  These estimates, which we discussed in section 6.1, replicate 

evidence on cross-major log-earnings gaps reported elsewhere (Altonji 2016; Chevalier 2011; 

Hamermesh and Donald 2008; Light and Schreiner 2019; Loury and Garman 1995) and serve as a 

benchmark for the remaining estimates. 

The next column of between-major estimates in table 5 are based on specification 2', which 

constrains the quadratic STEM intensity slope to be uniform across majors. We use the major-

specific mean level of STEM intensity to compute predicted log-earnings for each major.  Each 

predicted log-earnings gap based on specification 2' is slightly larger than the corresponding gap 

based on specification 2—by about 0.006 log points for most majors, but by as much as 0.01 for 

education and 0.03 for biological sciences.  These small differences between the estimates for 

specifications 2 and 2' are due to differences in major-specific mean levels of STEM intensity and 

changes in major-specific coefficient estimates discussed earlier. 

The remaining between-major estimates in table 5 are based on specification 2'', and are also 

shown graphically in figure 3.  For the first specification 2'' estimates we continue to use major-

specific mean levels of STEM intensity for direct comparison with estimates based on specification 

2'.  Focusing on this 2' vs. 2'' comparison, the estimated gaps decrease for three majors (nursing, 

computer and information science, and biological sciences) and increase for the remaining seven 

majors when we introduce major-specific STEM intensity slopes.  Although differences between 

specification 2' and specification 2'' estimates are generally small in magnitude (with a maximum 

of 0.04 for arts), some of these changes are nontrivial in percentage terms.  In particular, the 

predicted gap in log-earnings increases by 5% for both arts and education, 6% for business, 18% 

for engineering technology, and 20% for health and rehabilitation sciences.  Clearly, the 
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introduction of major-specific “returns” to STEM intensity changes our inferences about the log-

earnings premiums associated with select majors, independent of any assumed changes in the level 

of STEM intensity. 

In computing estimates for the final two columns in table 5, we introduce substantial shifts in 

the assumed levels of STEM intensity for each major.  First, we assume the engineering major has 

a high level of STEM intensity (equal to the 90th percentile among engineering majors) while the 

comparison major has a low (10th percentile) level; we then switch from this “high-low” 

comparison to a “low-high” comparison in which engineering is assigned the 10th percentile 

level.15  The estimated log-earnings gap between engineering and every other major except arts 

increases when we assign the engineering major a high level of STEM intensity and the 

comparison major a low level.  In some cases, the estimated gap more than doubles; e.g., the 

estimate for engineering vs. engineering technology increases from 0.099 when we use 

specification 2'' computed at the mean to 0.208 when we use specification 2'' with a “high-low” 

comparison.  Because engineering technology majors receive such a large return to STEM intensity 

(per the “within” estimate in table 5), the estimated log-earnings gap increases dramatically when 

we “penalize” them with a low level while simultaneously increasing the level for engineering.   

For the same reason, estimated log-earnings gaps between engineering and both computer and 

information science and health and rehabilitation sciences more than double or come close to 

doubling when we assign “high-low” levels of STEM intensity.  Estimates for other majors also 

change, but not nearly as much as for the three STEM majors that benefit the most in the labor 

market from high levels of STEM intensity. 

When we switch from “high-low” to “low-high” levels of STEM intensity, the estimated log-

earnings gaps are -0.025 for engineering technology, -0.037 for computer and information science, 

and a statistically insignificant 0.022 for health and rehabilitation sciences, indicating that highly 

STEM-intensive workers with these degrees can expect to earn roughly the same as engineering 

majors with low levels of STEM intensity. Relative to any preceding “between” estimates, the 

predicted gap also decreases substantially for business, education, communications, and especially 

language majors when we assign “low-high” levels of STEM intensity.  For language majors, the 

 
15Differences between the “high-low” and “low-high” estimates are systematically related to 
difference between the two majors’ “within” estimates.  Using engineering vs. engineering 
technology for illustration, 0.208 – 0.051 – 0.105 = -0.025. 
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predicted gap declines from 0.723 when we assume mean levels of STEM intensity to 0.590 when 

we assign “low-high” levels.  Despite being a humanities field, language majors receive a large 

expected payoff to STEM intensity and can substantially reduce their (predicted) earnings 

disadvantage by attaining the highest levels of STEM training seen among their major. 

For our final robustness test we reproduce table 5 after switching to the more restrictive STEM 

definition discussed in section 3.3; we drop health and rehabilitation sciences from the comparison 

due to it no longer being a STEM major.  The revised estimates, shown in table 6, can be easily 

summarized:  Aside from the within-major, estimated marginal effects of STEM intensity for 

business and education, which decrease from 0.052 and 0.024, respectively (as reported in table 5) 

to an imprecisely estimated -0.01 and 0.01, no other estimate in table 5 changes by more than a 

trivial amount.  This finding is unsurprising given the comparison of summary statistics (section 

5) based on our two STEM definitions.  Unless we focus specifically on psychology or a subset of 

the “split” majors, our estimates are largely insensitive to which STEM definition is used.       

7.  Concluding comments 

In this study, we use a large sample of bachelor’s degree recipients drawn from Ohio administrative 

records to explore relationships between college major, STEM intensity (the percentage of total 

college credits completed in STEM courses), and post-college earnings.  While other analysts have 

estimated log-earnings models with binary STEM indicators or an array of college major dummies 

among the controls, our point of departure is to use both strategies (with 41 distinct majors, 15 of 

which are STEM) plus controls for total credits and STEM intensity.  Our preferred specification 

allows each major to have its own intercept and nonlinear STEM intensity slope. 

We find that STEM intensity varies substantially within and between majors, for both STEM 

and non-STEM majors.  Many college students have relatively low (high) levels of STEM intensity 

despite earning their bachelor’s degree in a STEM (non-STEM) field.  As a result, many non-

STEM majors complete a higher percentage of STEM credits than do select STEM majors.  Among 

our most striking findings is that a philosophy major with a relatively high level of STEM intensity 

(equal to the 90th percentile among philosophy majors) is more STEM-intensive than a computer 

science major with a low (10th percentile) level of STEM intensity. 

Our best evidence of the role of STEM intensity comes from our “fully flexible” log-earning 

model.  Focusing on estimates for a subset of 11 popular majors, we find substantial variation 

among majors in the estimated log-earnings effect of a 10 percentage point increase in STEM 
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intensity (relative to the major-specific mean), ranging from zero for biological sciences to 0.27 

for computer and information science among STEM majors, and from -0.09 for arts to 0.16 for 

languages among non-STEM majors.  As a result of this heterogeneity, predicted log-earnings gaps 

between pairs of majors often change significantly as the assumed level of STEM intensity varies.  

For example, the predicted log-earnings of a computer science major lag behind those of an 

engineering major by 0.12 if both are assumed to have mean levels of STEM intensity for their 

major, but exceed the engineering major’s log-earnings by 0.04 if we assume a high (90th 

percentile) level of STEM intensity for computer and information science and a low (10th 

percentile) level for engineering.  The predicted log-earnings of a languages major never overtake 

those of an engineering major, but the gap closes from 0.72 to 0.59 when the assumed levels of 

STEM intensity switch from major-specific means to a high (90th percentile) level for languages 

and a low (10th percentile) level for engineering.  

Based on these and other findings, we conclude that the answer posed in the title is “both”:  

College major is an important predictor of post-college earnings, but students’ levels of STEM 

intensity are predicted to have large, positive payoffs in the labor market for many  majors and 

slightly negative payoffs for others.  While STEM majors can often (but not always) expect to 

benefit in the labor market by being relatively STEM-intensive in their college coursework, so can 

many non-STEM majors.  In light of this evidence, we believe policy initiatives focused on 

drawing more students into STEM majors might also emphasize the potential value of STEM 

coursework for non-STEM majors. At the same time, we acknowledge that any policy 

recommendation based on our current findings is highly tentative.  While our analysis rigorously 

demonstrates that major is not a suitable proxy for STEM intensity and that both measures have 

important, independent effects on post-college earnings, it must be extended in multiple 

dimensions before we can make precise policy prescriptions. 

We conclude by noting four ways in which our analysis might be extended.  First, to assess 

how and when non-STEM majors benefit from pursuing additional STEM coursework, we could 

explore the interplay between STEM intensity and major intensity, where the latter is defined as 

the percent of completed credits within the major as in Light and Schreiner (2019) and Light and 

Wertz (2022).  This extension could be used to explore the tradeoffs that non-STEM majors face 

between “teching up” with additional STEM courses, gaining additional within-major 

specialization, and branching out to related non-STEM fields.  Second, in a related vein, it would 
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be worth replicating the current analysis using less restrictive definitions of STEM to determine 

how labor market payoffs to “soft” and “hard” STEM credits differ across majors.  We chose to 

use the Department of Homeland Security STEM definition and a more restrictive definition 

because we believe policy initiatives designed to produce more STEM degree-holders typically 

have these definitions in mind, but there is much more to be learned about major-specific 

curriculum choices and their labor market benefits.  Both the first and second extension would 

require more elaborate specifications of the log-earnings model to establish how major-specific 

“returns” to STEM intensity vary by the field and/or rigor of the STEM (and non-STEM) courses.  

Third, if data are available, it would be useful to identify post-college occupations and learn which 

occupational choices allow non-STEM majors to receive the largest rewards to their STEM 

coursework.    Fourth, given that gender differences in STEM training are often shown to be a key 

determinant of gender differences in labor market outcomes, it would be of interest to apply our 

data and analytic strategy to a detailed gender comparison.  

 

Declaration:  This study’s primary data source, the Ohio Longitudinal Data Archive, is a project of the Ohio 
Education Research Center (oerc.osu.edu) and provides researchers with centralized access to administrative 
data. The OLDA is managed by CHRR at Ohio State University (chrr.osu.edu) in collaboration with Ohio's state 
workforce and education agencies (olda.ohio.gov), with those agencies providing oversight and funding.  The 
findings, conclusions, views, and opinions presented in this paper are those of the authors and do not necessarily 
represent the views of the U.S. Department of the Treasury or the United States government. 
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Data Appendix 

Sample selection:  Details corresponding to the discussion in section 3.2 are in table A1. 

Defining college majors, STEM majors, and STEM intensity:  As discussed in section 3.3, we 

begin by aggregating the 428 six-digit CIP codes associated with each sample member’s major to 

two-digit CIP codes, although for the nine two-digit codes that include both STEM and non-STEM 

six-digit majors (focusing only on six-digit majors associated with our sample members) we 

instead aggregate to both STEM and non-STEM versions of the two-digit category.  The CIP 

taxonomy includes 18 two-digit codes corresponding to basic skills and vocational fields, none of 

which appear in our data because bachelor’s degrees are not awarded in these fields.  We combine 

the two-digit fields communications and communications technology into a single field because 

they are similar and both contain very few sample members.  We eliminate the two-digit fields 

multi/interdisciplinary studies and science technologies after assigning each of their six-digit 

majors to another category (e.g., medieval and renaiisance studies is assigned to history); no 

reassigned six-digit category contains more than a handful of sample members.  Finally, as noted 

in section 3.3, we disaggregate the two-digit major encompassing a range of health fields into five 

majors (speech and hearing; medical sciences; public health, nursing; and health and rehabilitation 

sciences).   

Tables A2 and A3 summarize the mapping between CIP codes and majors described in section 3.3. 

Additional variables used for log-earnings models:  To construct the dependent variable, we 

sum earnings and weeks worked across all employers for each calendar quarter in the post-college 

earnings window (starting with the first calendar quarter following the quarter in which the 

bachelor’s degree is awarded, and ending with the third quarter of 2019 or, for individuals who 

reenroll, with the last nonenrolled quarter).  Total, quarterly weeks worked is capped at 13. We 

adjust this process for a small number of quarterly observations where UI records show positive 

earnings but zero (or missing) weeks worked for a given employer within a given quarter.  In those 

cases, we either (a) drop the employer-specific record if 11 or more weeks are worked for other 

employers in the same quarter; (b) interpolate weeks worked based on adjacent quarters for the 

same employer; or (c) drop the quarterly observation if neither (a) nor (b) is feasible.  After 

incorporating this work-around for missing weeks information, we deflate quarterly earnings by 
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the quarterly CPI-U for the Midwest and use a logarithmic transformation to obtain our dependent 

variable. 

Table 1 reports means and standard deviations for the dependent variable and select regressors 

used in the log-earnings models.  

Summary statistics based on alternative definition of STEM:  As discussed in section 3.3, we 

replicate portions of our analysis using an alternative, more restrictive, definition of STEM.  

Specifically, we now consider the nine “split” fields listed in tables 2 and A3 to be wholly non-

STEM, and we reassign six-digit CIP codes designated as STEM by DHS to be non-STEM unless 

they belong to engineering, engineering technology, physical sciences, biological sciences, 

mathematics/statistics, or computer/information science (the only STEM fields under our stricter 

definition).   

For the most part, this reassignment entails moving six-digit CIP codes (and credits taken in those 

fields) in the nine, formerly-split fields (agriculture, health/rehabilitation sciences, etc.) from 

STEM to non-STEM.  However, credits in “pure” non-STEM fields (most notably, psychology) 

are also moved from STEM to non-STEM if (a) they are designated as STEM by DHS; but (b) no 

sample member majors in those fields. To illustrate, DHS designates courses coded as cognitive 

psychology, experimental psychology, psychometrics, and other psychology fields to be STEM.  

None of our sample member major in these subfields of psychology, so psychology is not among 

our split fields.  However, students in various majors complete credits in these psychology courses 

and, more generally, in many of the courses that are reassigned from STEM to non-STEM under 

our more restrictive STEM definition.  As a result, STEM intensity changes slightly for most 

sample members, and often significantly for those majoring in the STEM version of a formerly-

split field.  For example, students majoring in plant science (agriculture) and management science 

(business) tend to complete many credits in those sub-fields, and thus undergo a significant drop 

in STEM intensity when those fields are reassigned from STEM to non-STEM. 

Table 3 reports major-specific mean STEM intensity (and the difference between this mean and 

the analogous mean in table 2) based on the new definition of STEM. 
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Table 1:  Summary Statistics for Dependent Variable and Select Regressors  
Used in Log-Earnings Models  

 Full Sample STEM Non-STEM 
 Mean S.D. Mean S.D. Mean S.D. 
Dependent variable        

Log-earningsa  5.78 .68 6.04 .64 5.72 .68 
Select regressors       

Total credits 130.06 18.04 130.83 19.29 129.87 17.72 
Percent of total credits in STEM 29.50 23.13 69.33 14.74 19.77 11.42 
1 if male .45  .69  .39  
1 if Hispanic .01  .01  .01  
1 if White (omitted group) .83  .83  .83  
      Black .07  .04  .07  
      Asian .02  .04  .02  
      unknown/other race   .07  .07  .07  
1st term grade point average 3.08 .71 3.14 .67 3.06 .72 
1st term percent of credits completed .95 .12 .97 .11 .95 .12 
1 if 4+ remedial credits in 1st term .11  .11  .12  
1 if no transfer (omitted group) .82  .86  .81  

one 2-year to 4-year transfer .10  .08  .10  
one 4-year to 4-year transfer .06  .05  .07  
multiple transfers .02  .01  .02  

1 if attend multiple campuses in term .23  .17  .24  
1 if earn associate degree .09  .09  .09  
Age at receipt of bachelor’s degree 23.04 1.12 23.15 1.09 23.01 1.12 
Post-college experience (X)a 2.77 2.10 2.69 2.08 2.78 2.11 

Number of observations 2,717,057 498,311 2,218,746 
Number of individuals 209,137 41,052 168,085 
aTime-varying variables; for these variables, summary statistics are computed for the time-
varying sample of earnings observations (e.g., 2,717,057 observations for the full sample).  
For all other (time-constant) variables, the “one observation per person” sample is used 
(e.g., 209,137 for the full sample).   
Note: Major-specific summary statistics are in table 2.  Each specification of the log-earning 
model also controls for experience squared, graduation year fixed effects, and college fixed 
effects.  
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Table 2:  Summary Statistics for STEM Intensity by Major  
(STEM and Non-STEM majors are ranked separately by mean STEM intensity) 

 Percent of Total Credits in STEM 
(STEM Intensity) 

Pct. of STEM Credits 
Earned in Year 1 

 
 

N  Mean S.D. p10 p90 p90-p10 Mean S.D. 
STEM majors:         
Engineering 79.1 8.1 69.8 87.3 17.5 23.0 8.4 17,274 
Health/Rehab. Sciencesa 72.2 12.7 52.9 85.6 32.8 19.1 9.3 387 
Engineering Technology 71.4 8.5 60.7 80.4 19.8 16.8 7.4 2,830 
Physical Sciences 66.7 9.2 53.8 77.7 23.9 20.4 9.3 2,273 
Medical Sciencesa 66.0 13.9 48.4 81.6 33.2 29.4 9.2 274 
Biological Sciences 65.8 8.5 54.7 75.9 21.2 21.7 9.0 9,613 
Public Healtha 59.9 11.8 47.9 78.3 30.4 15.7 7.0 81 
Agriculturea 59.3 12.1 44.0 76.7 32.6 19.8 9.5 1,178 
Mathematics/Statistics 57.1 10.6 43.3 71.2 27.9 21.6 9.7 1,288 
Environmental Studiesa 55.6 12.0 38.9 70.5 31.6 21.0 10.9 903 
Computer/Info. Sciences 55.6 17.5 28.8 77.3 48.5 20.2 10.7 3,907 
Social Sciencesa 44.5 11.3 30.3 61.0 30.8 23.5 11.8 70 
Businessa 36.6 13.5 17.1 53.3 36.2 32.8 18.3 513 
Criminal Justicea 35.7 20.7 14.3 63.0 48.7 23.9 12.6 98 
Communicationsa 17.5 15.8 2.4 42.1 39.7 30.7 29.1 363 
All 15 STEM majors 69.3 14.7 50.6 84.8 34.1 21.9 9.8 41,052 

Non-STEM majors:         
Environmental Studiesa 53.2 10.7 38.6 66.9 28.3 19.7 9.7 424 
Medical Sciencesa 44.7 21.2 14.8 70.9 56.1 28.7 16.0 915 
Agriculturea 41.1 14.5 22.4 61.5 39.1 24.9 13.9 1,280 
Psychology 33.2 12.1 18.2 49.2 31.1 22.6 14.2 10,940 
Public Healtha 28.4 12.9 15.1 46.2 31.1 27.3 16.7 1,186 
Health/Rehab. Sciencesa 24.2 11.1 11.1 38.9 27.7 37.2 20.4 6,383 
Nursing 22.3 8.2 14.8 30.3 15.5 53.8 23.8 13,047 
Human Sciences 21.6 11.9 7.8 37.7 30.0 34.0 21.4 6,890 
Multidiscip. Humanities 21.1 15.0 7.4 44.2 36.8 29.7 22.2 2,802 
Businessa 20.6 8.3 10.9 31.4 20.5 37.5 19.6 40,019 
Sports/Recreation 20.6 11.2 8.5 37.2 28.7 35.9 21.3 6,060 
Speech/Hearing 19.2 7.2 10.3 28.9 18.6 39.0 20.6 1,797 
Social Sciencesa 18.9 10.3 8.7 32.8 24.1 34.8 22.4 12,074 
Area/Ethnic/Cult. Studies 18.6 10.7 8.5 32.8 24.4 33.5 22.1 876 
Languages 17.8 11.8 7.5 33.3 25.8 37.7 24.2 2,051 
Architecture 17.6    10.8 5.0 32.9 27.9 37.4 27.7 1,574 
Education 17.1 12.0 6.0 35.7 29.6 39.7 25.7 19,412 
Philosophy 16.9 10.1 7.2 31.3 24.1 36.2 24.8 504 
Public Administration 15.2 5.6 8.8 22.5 13.7 36.6 22.9 3,120 
History 15.0 7.0 8.1 23.7 15.7 38.1 24.1 2,146 
Criminal Justicea 14.4 6.7 7.4 23.0 15.5 33.3 23.0 3,853 
Continued on next page. 
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Table 2:  Continued 
 Percent of Total Credits in STEM 

(STEM Intensity) 
Pct. of STEM Credits 

Earned in Year 1 
 
 

N  Mean S.D. p10 p90 p90-p10 Mean S.D. 
English 13.9 6.6 7.3 21.7 14.5 39.1 24.8 5,383 
Communicationsa 13.8 7.3 5.7 23.2 17.5 37.6 26.0 15,000 
Military Studies 11.8 4.5 7.2 18.3 11.1 37.0 26.0 37 
Legal Studies 11.4 5.8 5.3 18.0 12.7 40.4 28.1 312 
Arts 10.1 6.5 2.9 18.1 15.2 35.4 29.2 10,000 
All 26 non-STEM majors 19.8 11.4 7.9 35.0 27.1 37.1 23.5 168,085 
a “Split” majors with both STEM and non-STEM versions; see text and data appendix tables A2-3. 
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Table 3:  Mean STEM Intensity by Major, Based on 
Alternative Definition of STEM (compare to table 2) 

 Mean Δb N 
STEM majors:    
Engineering 78.3 0.8 17,274 
Engineering Technology 70.9 0.5 2,830 
Physical Sciences 64.8 1.9 2,273 
Biological Sciences 62.8 3.0 9,613 
Mathematics/Statistics 55.4 1.7 1,288 
Computer/Info. Sciences 53.3 2.3 3,907 
All 6 STEM majors 69.5 — 37,185 

Non-STEM majors:    
Environmental Studiesa 37.2 16.0 1,327 
Medical Sciencesa 35.5 9.2 1,189 
Agriculturea 33.7 14.5 2,458 
Psychology 17.0 16.2 10,940 
Public Healtha 24.3 4.1 1,267 
Health/Rehab. Sciencesa 23.2 1.0 6,770 
Nursing 20.4 1.9 13,047 
Human Sciences 18.8 2.8 6,890 
Multidiscip. Humanities 18.3 2.8 2,802 
Businessa 15.3 5.3 40,532 
Sports/Recreation 18.4 2.2 6,060 
Speech/Hearing 15.7 3.5 1,797 
Social Sciencesa 15.9 3.0 12,144 
Area/Ethnic/Cult. Studies 15.9 2.7 876 
Languages 15.8 2.0 2,051 
Architecture 15.4    2.2 1,574 
Education 15.4 1.7 19,412 
Philosophy 14.6 2.3 504 
Public Administration 12.9 2.3 3,120 
History 13.5 2.4 2,146 
Criminal Justicea 11.9 2.5 3,951 
English 12.3 1.6 5,383 
Communicationsa 11.3 2.5 15,363 
Military Studies 10.5 1.3 37 
Legal Studies 9.8 1.6 312 
Arts 9.1 1.0 10,000 
All 26 non-STEM majors 16.1 3.7 171,952 
aMajors that were split between STEM and non-STEM in 
table 2 and are now combined into a single, non-STEM field. 
bDifference between the means in table 2 and this table.  For 
non-STEM majors, the non-STEM mean from table 2 is used. 
Note:  Majors are listed in the same order as in table 2. 
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Table 4:  Estimated OLS Coefficients for Select Regressors in Post-College Log-Earnings Models   
 STEM Specification 
 Intensity 1 2 1' 2' 
Variable Ranka Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 
1 if STEM major  .251 .003   -.011† .007   
STEM intensity x10      .028 .000 -.000†  .000 
   STEM intensity squared x 100      .003 .000 .002 .000 
Total credits x 10      -.004† .001 -.019 .001 
   Total credits squared x 100       .000† .000 .001 .000 
Majorb          

[1]   Engineering 1   .316 .012   .206 .014 
[2]   Engineering Technology 3   .231 .014   .145 .015 
[3]   Nursing 21   .222 .013   .250 .013 
[4]   Computer/Information Sciences 11   .199 .014   .162 .014 
[5]   STEM Health/Rehab. Sciences 2   .195 .023   .104 .023 
[6]   STEM Public Health 7   .114 .041   .053† .041 
[7]   STEM Business 16   .094 .023   .095 .023 
[8]   Business 24   .030 .013   .059 .013 
[9]   Agriculture (omitted group) 15   —    —  
[10] Mathematics/Statistics 9   -.012† .019   -.051 .019 
[11] STEM Medical Sciences 5   -.086 .023   -.150 .032 
[12] Health/Rehab. Sciences 20   -.134 .014   -.109 .014 
[13] STEM Criminal Justice 17   -.142 .044   -.155 .044 
[14] Physical Sciences 4   -.151 .017   -.219 .018 
[15] STEM Social Sciences 14   -.173 .069   -.178 .068 
[16] Architecture 30   -.205 .017   -.174 .017 
[17] Criminal Justice 36   -.207 .015   -.172 .015 
[18] Education 32   -.212 .013   -.184 .013 
[19] Medical Sciences 13   -.216 .023   -.221 .023 
[20] STEM Communications 31   -.224 .034   -.195 .034 
[21] Legal Studies 40   -.236 .027   -.199 .027 
[22] STEM Agriculture 8   -.247 .020   -.284 .020 

Continued on next page. 
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Table 4:  Continued 
 STEM Specification 
 Intensity 1 2 1' 2' 
Variable Ranka Coef. S.E. Coef. S.E. Coef. S.E. Coef. S.E. 
[23] Public Administration 34   -.247 .015   -.211 .015 
[24] Communications 38   -.256 .013   -.221 .013 
[25] Public Health 19   -.262 .020   -.245 .020 
[26] Social Sciences 27   -.273 .013   -.243 .013 
[27] Human Sciences 22   -.274 .014   -.247 .014 
[28] STEM Environmental Studies 10   -.287 .020   -.324 .020 
[29] Biological Sciences 6   -.307 .014   -.371 .015 
[30] Military Studies 39   -.311 .091   -.280 .091 
[31] Multidisciplinary Humanities 23   -.328 .017   -.304 .017 
[32] Sports/Recreation 25   -.343 .015   -.314 .015 
[33] Area/Ethnic/Culture Studies 28   -.362 .023   -.332 .023 
[34] Psychology 18   -.376 .013   -.362 .013 
[35] Speech/Hearing 26   -.388 .019   -.358 .019 
[36] English 37   -.389 .015   -.355 .015 
[37] Languages 29   -.396 .018   -.366 .018 
[38] Environmental Studies 12   -.401 .027   -.431 .027 
[39] Arts 41   -.420 .014   -.383 .014 
[40] History 35   -.436 .017   -.401 .017 
[41] Philosophy 33   -.450 .029   -.417 .029 

Estimated effect 10 ppt increase in STEM intensity:         
   starting at mean level for STEM majors — — .073 .037 
   starting at mean level for non-STEM majors — — .043 .012 
aRank across all 41 majors of the major-specific mean level of STEM intensity shown in table 2.  
bSTEM majors are identified with bold-face.  Majors are ranked by the magnitude of the estimated coefficient in specification 2, for 
comparison with the STEM-intensity rankings described in note a. 

†Estimated coefficient is not statistically distinguishable from zero at a significance level of 0.05 or lower.  
Note:  All specifications include each variable tabulated in or summarized in the note to table 1.  The sample for all specifications has 
2,717,057 earnings observations for 209,137 individuals.  Standard errors account for nonindependence of residuals among multiple 
earnings observations for each individual. 
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Table 5:  Predicted Log-Earnings Gap Within and Between Select Majors, Based on 
Alternative Model Specification and Alternative Assumed STEM Intensities 

 Withinb Between Engineering and Select Majorc 

 Specification Specification 
Majora 2'' 2 2' 2'' 2'' 2'' 
Engineering .051 — — — — — 
 (.008)      
Engineering Technology .182 .084 .090 .099 .208 -.025 
 (.018) (.008) (.008) (.009) (.014) (.011) 
Nursing -.046 .093 .099 .084 .105 .100 
 (.011) (.005) (.005) (.006) (.008) (.009) 
Computer and Info. Science .266 .117 .123 .120 .280 -.037 
 (.021) (.008) (.008) (.010) (.017) (.014) 
STEM Health/Rehab. Sciences .162 .121 .128 .145 .235 .022† 
 (.045) (.020) (.019) (.026) (.032) (.027) 
Business .052 .286 .292 .304 .337 .234 
 (.007) (.004) (.004) (.004) (.007) (.006) 
Education  .024 .528 .538 .555 .564 .489 
 (.010) (.005) (.005) (.006) (.008) (.008) 
Communications  .049 .571 .578 .582 .627 .527 
 (.012) (.005) (.005) (.006) (.009) (.009) 
Biological Sciences -.019† .623 .625 .631 .646 .614 
 (.018) (.008) (.008) (.009) (.013) (.013) 
Languages .160 .712 .720 .723 .804 .590 
 (.040) (.014) (.014) (.016) (.022) (.026) 
Arts -.094 .736 .742 .776 .708 .751 
 (.019) (.007) (.007) (.008) (.013) (.011) 
Level of STEM intensity         
   for engineering  — Mean Mean p90 p10 
   for comparison major  — Mean Mean p10 p90 
aSTEM majors are identified with bold-face. 
bEstimated increment in log-earnings (based on specification 2'') for a worker with the 
given major whose STEM intensity increases from the major-specific 10th percentile 
(p10) to 90th percentile (p90) level.   

cEstimated log-earnings gap between engineering and the given major based on 
specifications 2, 2' and 2''.   For specifications 2' and 2'', workers are assigned their 
major-specific mean, p10, or p90 level of STEM intensity; all other regressors are held 
constant across majors.  

†Estimated log-earnings gap is not statistically distinguishable from zero at a 
significance level of 0.05 or lower.   

Note:  Standard errors are in parentheses.  The within and between estimates for 
specification 2′′ are shown graphically in figures 2 and 3, respectively.      
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Table 6:  Predicted Log-Earnings Gap Based on Alternative Definition of STEM 
(compare to table 5) 

 Withinb Between Engineering and Select Majorc 

 Specification Specification 
Majora 2'' 2 2' 2'' 2'' 2'' 
Engineering .051 — — — — — 
 (.008)      
Engineering Technology .182 .084 .089 .098 .208 -.025 
 (.018) (.008) (.008) (.009) (.014) (.011) 
Nursing -.051 .091 .096 .080 .098 .099 
 (.011) (.005) (.005) (.006) (.008) (.009) 
Computer and Info. Science .260 .117 .126 .123 .273 -.037 
 (.021) (.008) (.008) (.010) (.017) (.014) 
Business -.006† .284 .290 .303 .306 .262 
 (.007) (.004) (.004) (.004) (.006) (.006) 
Education  .013† .526 .537 .551 .556 .493 
 (.010) (.005) (.005) (.006) (.008) (.008) 
Communications  .061 .569 .576 .579 .630 .519 
 (.012) (.005) (.005) (.006) (.009) (.008) 
Biological Sciences .024† .621 .626 .626 .664 .590 
 (.018) (.008) (.008) (.008) (.012) (.013) 
Languages .110 .710 .720 .729 .777 .617 
 (.040) (.014) (.013) (.016) (.022) (.027) 
Arts -.100 .735 .741 .771 .704 .753 
 (.018) (.007) (.007) (.007) (.013) (.011) 
Level of STEM intensity         
   for engineering  — Mean Mean p90 p10 
   for comparison major  — Mean Mean p10 p90 
abcSee notes to table 5.   
†Estimated log-earnings gap is not statistically distinguishable from zero at a 
significance level of 0.05 or lower.   
Note:  Standard errors are in parentheses.  This table replicates table 5 after switching to 
the more restrictive definition of STEM described in section 3.3.  Health and 
Rehabilitation Sciences is dropped from this table because it is eliminated as a STEM 
major.   
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Table A1: Sample Selection Criteria 

 
Criterion 

  No. of  
   students 

Earn bachelor’s degree between 2010 and 2019a 426,559 
Earn degree before age 20 or after age 26b -75,385 
 351,174 
Earn <108 total credits due to missing informationc -43,779 
 307,395 
>8% of credits in basic skills and other nonacademic fields -6,993 
 300,402 
Major miscoded as a field not offered at the insititution. -352 
 300,050 
No post-college earningsd -90,913 
Final sample of recent bachelor’s degree recipients 209,137 
aThe sample includes students who attended two-year institutions, multiple 
four-year universities, and/or multiple campuses prior to earning their 
bachelor’s degree.  Our earnings models control for these factors. 

bAges are approximate because our data include year of birth but not month 
or day of birth. 

cIncomplete records arise when transfer credits are omitted from HEI records 
made available to researchers.  We use a cutoff of 108, which is 90% of the 
120 credits typically required for a bachelor’s degree at Ohio’s public 
institutions, to exclude highly-incomplete transcripts; because we measure 
STEM credits as a percentage of total credits, “slightly” incomplete 
transcripts are unlikely to pose a problem.  

dUI record contains at least one quarterly earnings observation between the 
first calendar quarter after the quarter in which the degree is earned and the 
end of the panel (the third quarter of 2019); if the individual reenrolls, the 
panel ends with the last quarter prior to reenrollment.  
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Table A2: CIP Codes for Majors That are Entirely STEM or Non-STEM 

 
Majora 

2-digit 
CIP 

Architecture 04 
Area/Ethnic/Culture Studies (includes Gender/Group Studies) 05 
Computer/Information Sciences 11 
Education 13 
Engineering 14 
Engineering Technology 15 
Language 16 
Human Sciences 19 
Legal Studies 22 
English 23 
Multidisciplinary Humanities 24 
Biological Sciences (includes Biology Technician (41.01)) 26 
Mathematics/Statistics 27 
Military Studies 29 
Sports/Recreation 31 
Philosophy  38 
Physical Sciences (includes Phys Sci Technology (41.03)) 40 
Psychology  42 
Public Administration 44 
History (45.08 only) 45 
Arts 50 
Speech/Hearing (51.02 only) 51 
Nursing (51.16, 51.38, 51.99 only) 51 
aSTEM majors are identified with bold-face. 
Note:  The master list of two-digit CIP codes associated with a few of these 
majors (e.g., education, psychology) include 6-digit STEM fields, none of which 
were recorded for our sample members; therefore, these majors are entirely non-
STEM rather than split between STEM and non-STEM.  In addition to what is 
tabulated, we assigned five interdisciplinary fields within CIP code 30 (e.g., 
peace studies, medieval studies) to military, history, or an alternative major.  
Table A3 contains a similar summary for majors that span both STEM and non-
STEM fields.   
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Table A3:  CIP Codes for Majors that Are Designated Both STEM and Non-STEM 
Major Designation CIP codesa Description  
Agriculture STEM 01.09.xx Animal Science 
  01.10.01 Food Science 
  01.11.xx Plant Science 
                 Non-STEM Other 01 Agri. Operations, Agri. Economics, etc. 
Environ. Studies/ STEM 03.01.xx Environmental Studies 
   Natural Resources  03.02.05 Water/Wetlands/Marine Science 
  03.05.09 Wood Science 
 Non-STEM Other 03.02 Natural Resources Management/Policy 
Communications STEM 09.07.02 Digital Communication and Media 
 (includes Technology) Non-STEM Other 09-10 Public Relations, Journalism, etc. 
Social Sciences STEM 45.03.01 Archaeology 
  45.06.03 Econometrics 
  45.07.02 Geographic Information Science 
 Non-STEM Other 45 Political Science, Sociology, etc. 
Criminal Justice STEM 43.01.06 Forensic Sciences 
 Non-STEM Other 43 Law Enforcement, Fire Protection, etc. 
Public Health STEM 51.22.02 Environmental Health 
 Non-STEM 51.15 

Other 52.22 
Counseling 
Community Health, Occup. Health, etc. 

Medical Sciences STEM 51.20.xx Pharmaceutics 
  51.22.05 Health/Medical Physics 
 Non-STEM 51.11.xx Pre-Dentristy, Pre-Medicine, etc. 
  51.20.01 Pharmacy 
Health/Rehabilitation STEM 51.10.05 Clinical Laboratory Science/Technology 
   Sciences Non-STEM Other 51  Health management, Dietetics, etc. 
Business STEM 52.13.xx Management Science, Actuarial Science 
 Non-STEM Other 52 Accounting, Marketing, Finance, etc. 
aThe xx placeholder refers to multiple six-digit codes within the given four-digit code. 
Note:  Table A2 contains a similar summary for majors that are entirely STEM or non-STEM.   
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Table A4:  Estimated OLS Coefficients for Select Regressors in Specification 2'' 
  Interaction with: 
 Direct 

Effecta 
STEM 

Intensitya 
STEM 

 Intensity2 a 
Variable Coeff. S.E. Coeff. S.E. Coeff. S.E. 
STEM intensity x 10 -.064†  .044 —  —  
   STEM intensity2 x 100  .016  .005 —  —  
Total credits x 10 -.015  .005 —  —  
   Total credits squared x 100  .001  .000 —  —  
Majorb       

[1]  Engineering -.491  .136 .025  .005 -.026  .005 
[2]  Engineering Technology -.093†  .273 .007†  .009 -.009†  .007 
[3]  Nursing .104†  .100 .024  .005 -.060  .008 
[4]  Computer/Information Sciences -.062†  .116 .011  .005 -.015  .006 
[5]  STEM Health/Rehab. Sciences .245†  .344 -.000†  .011 -.007†  .009 
[6]   STEM Public Health .722†  .993 -.015†  .031 .003†  .025 
[7]   STEM Business -.038†  .144 .010†  .008 -.014†  .010 
[8]   Business .025†  .094 .006†  .005 -.008†  .006 
[9]   Agriculture  omitted group) —  —  —  
[10] Mathematics/Statistics -.520†  .381 .021†  .014 -.025  .012 
[11] STEM Medical Sciences -.543†  .555 .025†  .018 -.032  .015 
[12] Health/Rehab. Sciences -.230  .098 .019  .005 -.045  .007 
[13] STEM Criminal Justice .079†  .237 -.013  .008 .012†  .022 
[14] Physical Sciences -.565†  .448 .018†  .014 -.023  .012 
[15] STEM Social Sciences -1.01†  1.16 .030†  .052 -.023†  .055 
[16] Architecture -.154†  .297 -.002†  .006 .011†  .011 
[17] Criminal Justice -.220  .099 .009†  .006 -.017†  .012 
[18] Education -.186  .093 .004†  .005 -.008†  .005 
[19] Medical Sciences -.035†  .118 -.001†  .006 -.009†  .008 
[20] STEM Communications -.080†  .106 -.014  .008 .018†  .012 
[21] Legal Studies -.298  .130 .018†  .014 -.047†  .044 
[22] STEM Agriculture -.531  .297 .024  .011 -.036   .010 
[23] Public Administration -.223  .106 .007†  .008 -.022†  .018 
[24] Communications -.287  .094 .011  .005 -.023  .007 
[25] Public Health -.342  .121 .010†  .007 -.016  .009 
[26] Social Sciences -.293  .095 .009  .005 -.016  .006 
[27] Human Sciences -.237  .094 .005†  .005 -.014  .006 
[28] STEM Environmental Studies -.169†  .277 -.001†  .011 -.006†  .011 
[29] Biological Sciences -.552  .255 .016  .009 -.024  .008 
[30] Military Studies .254†  .554 -.061†  .079 .148†  .250 
[31] Multidisciplinary Humanities -.432  .098 .013  .005 -.019  .006 
[32] Sports/Recreation -.222  .097 -.004†  .005 .005†  .008 
[33] Area/Ethnic/Culture Studies -.421  .114 .010†  .007 -.014†  .012 
[34] Psychology -.348  .098 .006†  .005 -.015  .006 
[35] Speech/Hearing -.318  .128 .005†  .010 -.022†  .023 

Continued on next page. 
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Table A4:  continued 
  Interaction with: 
 Direct STEM STEM 
 Effecta Intensitya Intensity2 a 
Variable Coeff. S.E. Coeff. S.E. Coeff. S.E. 
[36] English -.392 .098 .009† .006 -.023 .011 
[37] Languages -.481 .103 .012 .006 -.015 .009 
[38] Environmental Studies .521† .580 -.029† .023 .017† .022 
[39] Arts -.291 .094 -.014 .005 .052 .010 
[40] History -.461 .106 .009† .007 -.013† .013 
[41] Philosophy -.368 .135 -.004† .011 .018† .024 

aAll estimates are from a single regression.  Direct effects are estimated coefficients for 
STEM intensity and its square, total credits and its square, and major dummies.  Interactions 
are estimated coefficients for interactions between each major and STEM intensity and 
STEM intensity squared; the latter are multiplied by 100, as are the corresponding standard 
errors.  

bSTEM majors are identified with bold-face.  Majors are ranked in the same order as in table 
2.  

†Estimated coefficient is not statistically distinguishable from zero at a significance level 
of 0.10 or lower. 
Note:  Specification 2'' also includes each variable tabulated in or summarized in the note to 
table 1.  The sample has 2,717,057 earnings observations for 209,137 individuals.  
Standard errors account for nonindependence of residuals among multiple earnings 
observations for each individual. 
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Figure 1:  Relationship Between Major-Specific Estimated Log-Earning Coefficient and Mean 
STEM Intensity 

 

Note:  Mean STEM intensities are from the first column in table 2 and estimated coefficients are 
from the “specification 2” column in table 4.  STEM fields are in bold. 
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Figure 2:  Predicted Log-Earnings for Select Majors, Based on Specification 2'' and Alternative 
Assumed STEM Intensities 

 
Note:  Estimated differences between each pair of predicted log-earnings are shown in the “within” 
column in table 5. 
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Figure 3:  Predicted Log-Earnings Gaps Between Engineering and Select Majors, Based on 
Specification 2'' and Alternative Assumed STEM Intensities 

 

 
Note:  These predicted log-earnings gaps are also reported in the “between” columns for 
specification 2′′ in table 5. 
 


